
La création d’algorithmes tels que ChatGPT ou Midjourney nécessite des quantités colossales de données, analysées par des humains. Des "annotateurs" indispensables mais souvent précaires, faiblement rémunérés et maintenus dans l’ombre.
"Des descriptions graphiques de viol, d’inceste, de nécrophilie... C’était ça tous les jours." En 2021, Mophat Okinyi doit relire chaque jour plusieurs centaines de textes fournis à l’entreprise de traitement de données Sama par un client inconnu, pour entraîner un modèle d’intelligence artificielle (IA). L’objectif : préciser au logiciel ce qui pose problème dans ces textes, pour qu’il ne le reproduise pas.
Un travail rémunéré 21 000 shillings kenyans par mois (environ 150 euros) pour les employés du bas de l’échelle dont Mophat contrôlait l’activité. Cela a laissé chez lui des traces à vie. "Encore aujourd’hui, ça affecte mes relations avec ma famille, mes proches", explique l’analyste qualité kenyan. La mission qu’il décrit rappelle l’horreur à laquelle sont souvent confrontés les modérateurs des réseaux sociaux et répondait en fait, comme il le découvrira plus tard, à une commande de la start-up à la pointe de l’IA à l’origine de ChatGPT : OpenAI. (...)
derrière les grands discours de révolution technique se cache une masse de travailleurs invisibles dont les rangs se comptent en centaines de millions, selon des estimations. "On n’est pas du tout en train de créer des programmes qui se passent de l’humain, résume Antonio Casilli, professeur à l’Institut polytechnique de Paris. L’IA demande une quantité de travail humain énorme et absolument indispensable, dans toute la chaîne de production". (...)
Des petites mains qui construisent le futur clic après clic, souvent dans un secret et une précarité bien gardés. (...)
Le prix de cette modernité ? Aux Philippines, entre 1,50 et 3 dollars par "tâche". C’est ce que la plateforme de travailleurs indépendants Remotasks verse en moyenne à Eduardo* pour placer, clic par clic, pixel par pixel, les contours qui délimitent sur une image un panneau de signalisation. Puis un véhicule. Puis un buisson. Une "tâche" qui lui prend en général une heure ou moins et qu’il répète inlassablement, huit heures par jour, six jours par semaine. Ces images serviront ensuite à entraîner des algorithmes d’analyse vidéo, par exemple pour les voitures autonomes ou la surveillance algorithmique. (...)
Et vous-même y avez déjà contribué.
Que ce soit en laissant un "j’aime" sur Facebook ou en identifiant les images contenant une voiture dans un test captcha, vos retours participent à entraîner des algorithmes gratuitement depuis des années. Mais pour créer les IA qui ont bluffé le monde ces derniers mois, comme ChatGPT ou Midjourney, il faut des milliards d’exemples. Des données qui doivent souvent être "annotées", autrement dit accompagnées de commentaires, pour que la machine reproduise les catégories d’analyse de l’humain : faire comprendre que "ce tas de pixels est un enfant", que "cette phrase est fausse" ou que "cet élément évoque des comportements illégaux et ne doit pas être reproduit".
Et l’entraînement ne s’arrête jamais (...)
Autant de tâches qu’il est actuellement impossible d’automatiser.
"Ce n’est pas suffisant, mais c’est déjà quelque chose"
Astro* est l’un de ces nouveaux "entraîneurs d’IA". L’entrepreneur originaire de Tanzanie, qui a récemment terminé ses études de linguistique en France, réalise des tâches en indépendant à temps partiel via la plateforme Appen. (...)
A l’autre bout du spectre, des entreprises embauchent des annotateurs en interne, notamment pour des tâches qui nécessitent une expertise précise. Mais pour nombre d’entre elles, la solution la plus rentable est souvent la sous-traitance : à des entreprises dans d’autres pays qui embauchent des annotateurs localement, comme Sama, ou encore à des plateformes comme Remotasks, Appen ou Toloka, qui transfèrent les missions à des travailleurs indépendants payés à la "micro-tâche".
"Ces travailleurs sont souvent recrutés dans des pays à faibles revenus, et géopolitiquement instables." Antonio Casilli, professeur à l’Institut polytechnique de Paris (...)
A ces critères, Antonio Casilli ajoute des taux d’éducation et d’équipement informatique importants, l’existence d’une industrie de centres d’appels ou des relations fortes avec une ancienne puissance coloniale. Plusieurs noms de pays reviennent souvent : les Philippines, Madagascar, le Kenya, le Venezuela, le Pakistan…
Dans ces pays, un tel travail représente souvent un filet de sécurité précieux. "Ce n’est pas une source de travail fixe ou suffisante, mais c’est au moins quelque chose, résume Maria* (...)
Après avoir suivi une formation, elle travaille aujourd’hui trois jours par semaine sur la plateforme, à raison de 10 heures par jour.
Pour quel salaire ? "Les tâches de catégorisation données par Remotasks au Venezuela peuvent prendre seulement quelques minutes et être payées 11 centimes de dollar, détaille Maria. D’autres beaucoup plus complexes peuvent durer huit heures ou plus, comme l’annotation de vidéos ou de données lidar, et être payées 10 dollars." Mais tout dépend du pays et de la difficulté de la tâche. Un "eldorado" relatif qui attire, y compris parfois des mineurs qui mentent sur leur âge pour rejoindre ces plateformes de micro-tâches, raconte le site spécialisé Wired (...)
Précarité et dépendance (...)
Même si une tâche peut être payée correctement par rapport au marché local, les travailleurs du clic déplorent souvent la différence de traitements entre les pays. (...)
Pour gagner des sommes correctes, les indépendants doivent être disponibles à toute heure du jour et de la nuit et s’adapter à des projets aux durées variables. (...)
Ce que certains voient comme une "opportunité professionnelle" peut aussi se transformer en piège. En Chine, des établissements promettent à leurs étudiants une formation en "IA" ou en "Big data", mais les forcent à annoter des images toute la journée pour un salaire inférieur au minimum légal, raconte le média Rest of World. Cette pratique n’est pas spécifique à la Chine, assure Antonio Casilli, qui cite également l’exemple de Madagascar. (...)
"L’IA ne peut pas être éthique si elle est entraînée de façon immorale"
A qui profite ce travail souvent ingrat, parfois à la frontière de l’éthique ? Difficile de le savoir : l’industrie baigne dans un épais voile de secret, et comme dans le cas de Mophat Okinyi, les annotateurs indépendants savent rarement à qui sont destinées les données qu’ils traitent (...)
"Si les annotateurs savaient qu’ils travaillent pour une entreprise qui génère des centaines de millions de dollars comme OpenAI, ils n’accepteraient pas des salaires si bas."
Mophat Okinyi, ex-analyste qualité chez Sama (...)
Pour Antonio Casilli, il faut commencer par oublier l’idée que l’IA est seulement une prouesse d’ingénieurs ou d’entrepreneurs. "Nous sommes tous en quelque sorte les producteurs de ces IA, parce que ce sont nos données qui servent à les entraîner, mais nous ne sommes pas reconnus comme tels. Tant qu’on continuera à penser que l’IA est seulement l’affaire de Sam Altman, on aura un problème."